Een Waar Gebeurd
Horrorverhaal ! |
|
|
In 1897 probeerde de staat Indiana
in Amerika de volgende wet door te voeren. Ongelooflijk, maar
waar.
Deze wet is sindsdien bekend als de "Indiana Pi Bill".
Dr. Edwin J. Goodman, een arts uit Solitude, Posey County,
Indiana was ervan overtuigd dat hij de cirkel gekwadrateerd had,
en hij besloot dat de staat Indiana de eerste was die van zijn
nieuwe ontdekking mocht profiteren. Zij mochten zijn nieuwe
ontdekking gratis op hun scholen gaan gebruiken. De rest van het
land en van de wereld zou hem later royalty moeten betalen om
zijn ontdekking te mogen gebruiken.
Vooraf was deze wet al door de onderwijscommissie met 67
tegen 0 stemmen aangenomen!
Hier is de volledige tekst van het wetsvoorstel: |
|
|
HOUSE BILL NO. 246
"A bill for an act introducing a new
mathematical truth and offered as a contribution to
education to be used only by the State of Indiana free
of cost by paying any royalties whatever on the same,
provided it is accepted and adopted by the official
action of the legislature of 1897.
"Section 1. Be it enacted by the General
Assembly of the State of Indiana: It has been found
that a circular area is to the square on a line equal
to the quadrant of the circumference, as the area of
an equilateral rectangle is to the square on one side.
The diameter employed as the linear unit according to
the present rule in computing the circle's area is
entirely wrong, as it represents the circles area one
and one-fifths times the area of a square whose
perimeter is equal to the circumference of the circle.
This is because one-fifth of the diameter fils to be
represented four times in the circle's circumference.
For example: if we multiply the perimeter of a square
by one-fourth of any line one-fifth greater than one
side, we can, in like manner make the square's area to
appear one fifth greater than the fact, as is done by
taking the diameter for the linear unit instead of the
quadrant of the circle's circumference.
"Section 2. It is impossible to compute the
area of a circle on the diameter as the linear unit
without trespassing upon the area outside the circle
to the extent of including one-fifth more area than is
contained within the circle's circumference, because
the square on the diameter produces the side of a
square which equals nine when the arc of ninety
degrees equals eight. By taking the quadrant of the
circle's circumference for the linear unit, we fulfill
the requirements of both quadrature and rectification
of the circle's circumference. Furthermore, it has
revealed the ratio of the chord and arc of ninety
degrees, which is as seven to eight, and also the
ratio of the diagonal and one side of a square which
is as ten to seven, disclosing the fourth important
fact, that the ratio of the diameter and circumference
is as five-fourths to four; and because of these facts
and the further fact that the rule in present use
fails to work both ways mathematically, it should be
discarded as wholly wanting and misleading in its
practical applications.
"Section 3. In further proof of the value
of the author's proposed contribution to education,
and offered as a gift to the State of Indiana, is the
fact of his solutions of the trisection of the angle,
duplication of the cube and quadrature having been
already accepted as contributions to science by the
American Mathematical Monthly, the leading exponent of
mathematical thought in this country. And be it
remembered that these noted problems had been long
since given up by scientific bodies as unsolvable
mysteries and above man's ability to comprehend."
LEGISLATIVE HISTORY
Introduced
IN THE HOUSE
Read first time January 18th, 1897
Referred to Committee on Canals
Reported and referred to Committee on Education
January 19th, 1897
Reported back February 2nd, 1897
Read second time February 5th, 1897
Ordered engrossed February 5th, 1897
Read third time February 5th, 1897
Passed February 5th, 1897
Ayes - 67 - Noes -0-
Introduced by Record
IN THE SENATE
Read first time and referred to
committee on Temperance, February 11th, 1897
Reported favorable February 12th, 1897
Read second time and indefinitely postponed
February 12, 1897
|
|
|
|
Brrrrrrr....!!!! |
|
|
Gelukkig voor Indiana was
op 5 februari het hoofd van de "Purdue
University Mathematics Department", professor Waldo,
aanwezig om te lobbyen voor een budget voor zijn
universiteit. Hij was verbaasd dat er wiskunde werd
besproken inde General Assembly. Maar deze verbazing
sloeg om in afschuw toen hij ontdekte wat er besproken
werd. Die avond "coachte"" hij de
senatoren over de wet.
Met succes. De wet haalde het niet.......
Niet alleen probeerde Goodman de verkeerde waarde
voor p te introduceren; deze
"wetenschapper" had waarschijnlijk zelf
niet eens door dat hij ook verschillende waarden voor p
beoogde.
Ik citeer uit de tekst hierboven:
...
" It has been found that a circular area is
to the square on a line equal to the quadrant of
the circumference, as the area of an equilateral
rectangle is to the square on one side..." |
Met "equilateral rectangle" wordt
natuurlijk gewoon een vierkant bedoeld. Dan staat hier
in normale taal:
|
|
|
|
ofwel |
|
en daaruit volgt gemakkelijk
p
= 4 |
Het volgende citaat uit dezelfde tekst:
...
" The diameter employed as the linear unit
according to the present rule in computing the
circle's area is entirely wrong, as it
represents the circles area one and one-fifths
times the area of a square whose perimeter is
equal to the circumference of the circle...." |
Daar staat dus p
= 1/5 • (oppervlakte van het
vierkant waarvan de omtrek hetzelfde is als van de
cirkel)
Dat geeft: |
|
en daaruit volgt p
= 20/6 = 10/3
» 3,333
Op naar de volgende:
..." the ratio of the
chord and arc of ninety degrees, which is as
seven to eight..." |
Hier staat eigenlijk: |
|
en daaruit volgt p
» 3,23 |
|
|
Om te laten zien dat
Goodman niet alleen van p
geen verstand had, maar ook niet van andere wiskunde het
volgende citaat:
..." the ratio of the
diagonal and one side of a square which is as
ten to seven...." |
Daaruit volgt en passant dat Ö2/1
= 10/7 ofwel Ö2
» 1,43
|
|
|
Het laatste citaat dan
maar:
..." the ratio of the
diameter and circumference is as five-fourths to
four..." |
daar staat dus 2r/2pr
= 1,25/4 Þ
p »
3,2
|
|
|
En zo hebben we vijf blunders in één
document.
Typisch DOMMIGHEID! |
|
|
|