| |
© h.hofstede (h.hofstede@hogeland.nl)
|
|
| |
| 1. |
Geef de algemene
oplossing van de volgende differentiaalvergelijkingen: |
| |
|
|
|
| |
a. |
x3dx
+ (y + 1)2dy = 0 |
| |
|
|
|
| |
b. |
x2(y
+ 1)dx + y2(x - 1)dy = 0
|
| |
|
|
|
| |
c. |
4xdy -
ydx = x2dy |
| |
|
|
|
| |
d. |
x(y - 3)dy =
4ydx |
|
| |
|
|
|
| |
e. |
cosy • dx
+ (1 + e-x)siny • dy = 0 |
| |
|
|
|
| |
f. |
(x2
+ 1) • dy = tany • dx |
| |
|
|
|
| |
g. |
dr +
r • tanφ • dφ
= 0 |
| |
|
|
|
| |
h. |
xyy' = (y +
1)(1 - x) |
| |
|
|
|
| |
|
|
 |
|
© h.hofstede (h.hofstede@hogeland.nl)
|