© h.hofstede (h.hofstede@hogeland.nl) |
|||
1. | sin2(α
+ 1/4π)
= sin(α + 1/4π) • sin(α + 1/4π) = (sinαcos1/4π + cosαsin1/4π) • (sinαcos1/4π + cosαsin1/4π) = sin2α•cos21/4π + 2sinα•cos1/4π•cosα•sin1/4π + cos2α•sin21/4π = sin2α • (1/2√2)2 + 2sinαcosα • 1/2√2 • 1/2√2 + cos2α • (1/2√2)2 = 1/2sin2α + sinαcosα + 1/2cos2α = 1/2(sin2α + cos2α) + sinαcosα = 1/2 + sinαcosα |
||
2. | cos(α
+ 1/6π)
+ cos(α - 1/6π)
= cosαcos1/6π - sinαsin1/6π + cosαcos1/6π + sinαsin1/6π = 2cosαcos1/6π = 2cosα • 1/2√3 = √3 • cosα |
||
3. | cos2(1/4π
- 1/2x)
= cos(1/4π - 1/2x) • cos(1/4π - 1/2x) = (cos1/4πcos1/2x + sin1/4πsin1/2x) • (cos1/4πcos1/2x + sin1/4πsin1/2x) = cos2(1/4π) • cos2(1/2x) + 2cos(1/4π) • cos(1/2x) • sin(1/4π) • sin(1/2x) + sin2(1/4π) • sin2(1/2x) = (1/2√2)2 • cos21/2x + 2 • 1/2√2 • cos1/2x • 1/2√2 • sin1/2x + (1/2√2)2 • sin21/2x = 1/2cos21/2x + cos1/2x • sin1/2x + 1/2sin21/2x = 1/2(cos21/2x + sin21/2x) + cos1/2x • sin1/2x = 1/2 + 1/2 • sin(2 • 1/2x) = 1/2 + 1/2sinx |
||
4. | a. | sin(5/12π)
= sin(3/12π + 2/12π) = sin(3/12π)cos(2/12π) + cos(3/12π)sin(2/12π) = 1/2√2 • 1/2√3 + 1/2√2 • 1/2 = 1/4√6 + 1/4√2 |
|
b. | cos(1/12π)
= cos(1/4π - 1/6π) = cos(1/4π)cos(1/6π) + sin(1/4π)sin(1/6π) = 1/2√2 • 1/2√3 + 1/2√2 • 1/2 = 1/4√6 + 1/4√2 |
||
c. | cos(1/12π)
= sin(5/12π) Dat is logisch, want cos(5/12π) = sin(1/2π - 5/12π) |
||
5. | Zie de figuur
hiernaast. AD = 5 (Pythagoras) cos(α + β) = 3/AC (in driehoek ABC) ......(1) cos(α + β) = cosαcosβ - sinαsinβ cosα = 3/5 en sinα = 4/5 (in driehoek ABD) cosβ = AE/5 en sinβ = 1/5 (in driehoek ADE) invullen geeft dan cos(α + β) = 3/5 • AE/5 - 4/5 • 1/5 Dus moet gelden (met (1)): 3/AC = 3AE/25 - 4/25 AE = √(52 - 12) = √24 3/AC = 3√24/25 - 4/25 75/AC = 3√24 - 4 AC = 75/(3√24 - 4) EC = AC - AE = 75/(3√24 - 4) - √24 |
|
|
6. | AP =
√(22 + 12) =
√5 = AQ sin(α + θ) = 2/Ö5 en cos(α + θ) = 1/Ö5 sinα = 1/Ö5 en cosα = 2/Ö5 sin(α + θ) = sinαcosθ + cosαsinθ 2/√5 = 1/√5 • cosθ + 2/√5 • sinθ 2 = cosθ + 2sinθ ...... (1) |
|
|
cos(α + θ) = cosαcosθ - sinαsinθ 1/√5 = 2/√5 • cosθ - 1/√5 • sinθ 1 = 2cosθ - sinθ .......(2) uit (1) volgt cosθ = 2 - 2sinθ invullen in (2): 1 = 2(2 - 2sinθ) - sinθ 1 = 4 - 5sinθ 5sinθ = 3 sinθ = 3/5 |
|||