© h.hofstede (h.hofstede@hogeland.nl) |
|||
1. | a. | sin(-1/3π) = sin(1/3π) = 1/2√3 | |
b. | sin(11/6π) = -sin(1/6π) = -1/2 | ||
c. | sin(11/3π)
= -sin(1/3π) cos(11/3π) = -cos(1/3π) dan is tan(11/3π) = tan(1/3π) = √3 |
||
d. | cos(π) = -cos(0) = -1 | ||
e. | cos(12/3π) = cos(1/3π) = 1/2 | ||
f. | sin(5/6π)
= sin(1/6π) cos(5/6π) = -cos(1/6π) dan is tan(5/6π) = -tan(1/6π) = -1/3√3 |
||
g. | sin(-2/3π)
= -sin(2/3π)
= sin(1/3π) cos(-2/3π) = cos(2/3π) = -cos(1/3π) dan is tan(-2/3π) = -tan(1/3π) = -√3 |
||
h. | sin(13/4π) = -sin(3/4π) = -1/2√2 | ||
2. | a. | Driehoek CPQ is hetzelfde als
driehoek CPA, want de hoeken zijn gelijk en beiden hebben dezelfde zijde
CP Dus zijn alle zijden gelijk, en is CQ = CA = √3 |
|
b. | AB/AC =
QB/PQ dus PQ = QB • AC/AB QB = BC - QC = 2 - √3 dan is PQ = (2 - √3) • √3/1 = 2√3 - 3 |
||
c. | PC2 = CQ2 +
(PQ)2 = 3 + (2√3 - 3)2 = 3 + 12 - 12√3 + 9 = 24 - 12√3 Dus PC = √(24 - 12√3) |
||
d. | sin15º = PQ/PC
= (2√3 - 3)/√(24
- 12√3) cos15º = CQ/PC = √3/√(24 - 12√3) tan 15º = PQ/CQ = (2√3 - 3)/(√3) = 2 - 3/√3 = 2 - √3 |
||