© h.hofstede (h.hofstede@hogeland.nl) |
|||
1. | a. | x2 + 9x + 20 = 0 (x + 5)(x + 4) = 0 x = -5 ∨ x = -4 |
|
b. | x2
- 8x + 15 = 0 (x - 5)(x - 3) = 0 x = 5 ∨ x = 3 |
||
c. | x2 + 5x = 14 x2 + 5x - 14 = 0 (x - 2)(x + 7) = 0 x = 2 ∨ x = -7 |
||
d. | x2 + 9x
+ 8 = 0 x2 + 9x + 8 = 0 (x + 8)(x + 1) = 0 x = -8 ∨ x = -1 |
||
e. | x2 = 4x + 21 x2 - 4x - 21 = 0 (x - 7)(x + 3) = 0 x = 7 ∨ x = -3 |
||
f. | x2 + 4x = 5x
+ 30 x2 - x - 30 = 0 (x - 6)(x + 5) = 0 x = 6 ∨ x = -5 |
||
2. | a. | 3x2 +
5x = 24 - x 3x2 + 6x - 24 = 0 x2 + 2x - 8 = 0 (x - 2)(x + 4) = 0 x = 2 ∨ x = -4 |
|
b. | 6x
- 4x2 = 2x2
- 12x -
60 0 = 6x2 - 18x - 60 x2 - 3x - 10 = 0 (x - 5)(x + 2) = 0 x = 5 ∨ x = -2 |
||
c. | (x + 5)(x +
1) = 14x - 4x2 +
65 x2 + 5x + x + 5 = 11x - 4x2 + 65 5x2 - 5x - 60 = 0 x2 - x - 12 = 0 (x - 4)(x + 3) = 0 x = 4 ∨ x = -3 |
||
3. | a. | snijden is gelijkstellen:
2x + 4 = x2 + 6x
- 1 0 = x2 + 4x - 5 0 = (x - 1)(x + 5) x = 1 ∨ x = -5 x = 1 geeft y = 2 • 1 + 4 = 6 en snijpunt (1, 6) x = -5 geeft y = 2 • -5 + 4 = -6 en snijpunt (-5, -6) |
|
b. | y = 10 geeft x2
+ 2x - 5 = 10 x2 + 2x - 15 = 0 (x - 3)(x + 5) = 0 x = 3 ∨ x = -5 De punten zijn (3, 10) en (-5, 10) en die hebben afstand 3 - - 5 = 8 |
||
c. | snijden is gelijkstellen:
x2 + 2x -
1 = 2x2 - 5x +
9 0 = x2 - 7x + 10 0 = (x - 2)(x - 5) x = 2 ∨ x = 5 x = 2 geeft y = 22 + 2•2 - 1 = 7 en snijpunt (2, 7) x = 5 geeft y = 52 + 2•5 - 1 = 34 en snijpunt (5, 34) |
||