|
|||||
1. | a. | 3x2
- 4x
= 8x - 2x2 3x2 - 4x - 8x + 2x2 = 0 5x2- 12x = 0 x(5x - 12) = 0 x = 0 ∨ x = 12/5 |
|||
b. | 2x(x + 1) = 6x2
2x2 + 2x = 6x2 2x2 + 2x - 6x2 = 0 -4x2 + 2x = 0 2x(-2x + 1) = 0 2x = 0 ∨ -2x + 1 = 0 x = 0 ∨ x = 1/2 |
||||
c. |
4x2 + x(x
- 1) = 5x |
||||
d. | 5x2 + 8 = 12
-
2x2 7x2 = 4 x2 = 4/7 x = √4/7 ∨ x = -√4/7 |
||||
e. | 2x(x + 3) = 7x2
+ 6x - 10 2x2 + 6x = 7x2 + 6x - 10 -5x2 = -10 x2 = 2 x = ±√2 |
||||
f. | (x - 3)2 + 1 =
8x + 10 (x - 3)(x - 3) + 1 = 8x + 10 x2 - 3x - 3x + 9 + 1 = 8x + 10 x2 - 3x - 3x + 9 + 1 - 8x - 10 = 0 x2 - 14x = 0 x(x - 14) = 0 x = 0 ∨ x = 14 |
||||
g. | 2x2
- 9 =
4x - (x + 3)2 2x2 - 9 = 4x - (x + 3)(x + 3) 2x2 - 9 = 4x - (x2 + 3x + 3x + 9) 2x2 - 9 = 4x - x2 - 3x - 3x - 9 2x2 - 9 - 4x + x2 + 3x + 3x + 9 = 0 3x2 + 2x = 0 x(3x + 2) = 0 x = 0 ∨ 3x + 2 = 0 x = 0 ∨ x = -2/3 |
||||
h. | 3(x - 2)2
= 6 + (x - 2)2 3(x - 2)2 - (x - 2)2 = 6 2(x - 2)2 = 6 (x - 2)2 = 3 x - 2 = √3 ∨ x - 2 = -√3 x = 2 + √3 ∨ x = 2 - √3 |
||||
2. | Het midden van PR
ligt bij x = 1/2a Dan is y = 8 - 1/2x2 = 8 - 1/2(1/2a)2 = 8 - 1/8a2 Maar dat moet zijn y = 4, want het is het midden van PR. dus moet gelden 8 - 1/8a2 = 4 4 = 1/8a2 ⇒ a2 = 32 ⇒ a = √32 |
||||
3. | (x2
- 7)2 - 25 = 0 (x2 - 7)2 = 25 x2 - 7 = 5 ∨ x2 - 7 = -5 x2 = 12 ∨ x2 = 2 x = √12 ∨ x = -√12 ∨ x = √2 ∨ x = -√2 AD = 2√12 en BC = 2√2 Dus AD is 2√12/2√2 = √6 keer zo lang als BC. |
||||
© h.hofstede (h.hofstede@hogeland.nl) |