|
|||||
1. | a. | sin(1/2π
-
α + -β) = sin(1/2π
-
α)cos(-β) + cos(1/2π
-
α)sin(-β) Maar sin(1/2π - x) = cosx en cos(1/2π - x) = sinx en sin(-x) = -sinx en cos(-x) = cosx Dat geeft : |
|||
b. | cos(α
+ -β) = cosαcos(-β)
- sinαsin(-β) cos(α - β) = cosα • cos(β) - sinα • -sin(β) cos(α - β) = cosα • cos(β) + sinα • sin(β) |
||||
2. | sin2(α
+ 1/4π)
= sin(α + 1/4π) • sin(α + 1/4π) = (sinαcos1/4π + cosαsin1/4π) • (sinαcos1/4π + cosαsin1/4π) = sin2α•cos21/4π + 2sinα•cos1/4π•cosα•sin1/4π + cos2α•sin21/4π = sin2α • (1/2√2)2 + 2sinαcosα • 1/2√2 • 1/2√2 + cos2α • (1/2√2)2 = 1/2sin2α + sinαcosα + 1/2cos2α = 1/2(sin2α + cos2α) + sinαcosα = 1/2 + sinαcosα |
||||
3. | cos(α
+ 1/6π)
+ cos(α - 1/6π)
= cosαcos1/6π - sinαsin1/6π + cosαcos1/6π + sinαsin1/6π = 2cosαcos1/6π = 2cosα • 1/2√3 = √3 • cosα |
||||
4. | cos2(1/4π
- 1/2x)
= cos(1/4π - 1/2x) • cos(1/4π - 1/2x) = (cos1/4πcos1/2x + sin1/4πsin1/2x) • (cos1/4πcos1/2x + sin1/4πsin1/2x) = cos21/4π • cos21/2x + 2cos1/4π • cos1/2x • sin1/4π • sin1/2x + sin21/4π • sin21/2x = (1/2√2)2 • cos21/2x + 2 • 1/2√2 • cos1/2x • 1/2√2 • sin1/2x + (1/2√2)2 • sin21/2x = 1/2cos21/2x + cos1/2x • sin1/2x + 1/2sin21/2x = 1/2(cos21/2x + sin21/2x) + cos1/2x • sin1/2x = 1/2 + 1/2 • sin(2 • 1/2x) = 1/2 + 1/2sinx |
||||
5. | sin(5/12π)
= sin(3/12π + 2/12π) = sin(3/12π)cos(2/12π) + cos(3/12π)sin(2/12π) = 1/2√2 • 1/2√3 + 1/2√2 • 1/2 = 1/4√6 + 1/4√2 |
||||
6. | a. | cos(1/12π)
= cos(1/4π - 1/6π) = cos(1/4π)cos(1/6π) + sin(1/4π)sin(1/6π) = 1/2√2 • 1/2√3 + 1/2√2 • 1/2 = 1/4√6 + 1/4√2 |
|||
b. | cos(1/12π)
= sin(5/12π) Dat is logisch, want cos(5/12π) = sin(1/2π - 5/12π) |
||||
7. | cos2x + cos2(x
-
1/3π) = cos2x + (cosx • cos1/3π + sinx • sin1/3π)2 = cos2x + cos2x• cos2(1/3π) + 2cosx • cos(1/3π) • sinx • sin(1/3π) + sin2x • sin2(1/3π) = cos2x + cos2x • 1/4 + 2cosx • 1/2 • sinx • 1/2√3 + sin2x • 3/4 = 5/4cos2x + 1/2√3 • cosx • sinx + 3/4sin2x = 3/4 + 1/2cos2x + 1/2√3 • cosx • sinx = 3/4 + 1/2cosx • (cosx + √3 • sinx) 3/4 + cosx • cos(x - 1/3π) = 3/4 + cosx (cosx • cos1/3π + sinx • sin1/3π) = 3/4 + cosx (1/2cosx + 1/2√3 • sinx) = 3/4 + 1/2cosx • (cosx + √3 • sinx) Dat is inderdaad gelijk. |
||||
8. | Zie de figuur
hiernaast. AD = 5 (Pythagoras) cos(α + β) = 3/AC (in driehoek ABC) ......(1) cos(α + β) = cosαcosβ - sinαsinβ cosα = 3/5 en sinα = 4/5 (in driehoek ABD) cosβ = AE/5 en sinβ = 1/5 (in driehoek ADE) invullen geeft dan cos(α + β) = 3/5 • AE/5 - 4/5 • 1/5 Dus moet gelden (met (1)): 3/AC = 3AE/25 - 4/25 AE = √(52 - 12) = √24 3/AC = 3√24/25 - 4/25 75/AC = 3√24 - 4 AC = 75/(3√24 - 4) |
|
|||
EC = AC - AE = 75/(3√24 - 4) - √24 | |||||
9. | Bereken de afgeleide
van
1/2sinx
- 1/6sin3x
Die is 1/2cosx - 1/2cos3x = 1/2cosx - 1/2cos(x + 2x) = 1/2cosx - 1/2(cosxcos2x - sinxsin2x) = 1/2cosx - 1/2cosx(1 - 2sin2x) + 1/2sinx•2sinxcosx = 1/2cosx - 1/2cosx + cosxsin2x + sin2xcosx = 2sin2x cosx = 2sinx • cosx • sinx = sin2x • sinx Dat is precies de gezochte formule, dus was onze oorspronkelijke formule een primitieve van deze. |
||||
10. | cos(α
-
β) - cos(α +
β) = (cosαcosβ
+ sinαsinβ)
- (cosαcosβ
- sinαsinβ) = 2sinαsinβ dus sinαsinβ = 1/2(cos(α - β) cos(α + β)) cos(α - β) + cos(α + β) = (cosαcosβ + sinαsinβ) + (cosαcosβ - sinαsinβ) = 2cosαcosβ duns cosαcosβ = 1/2(cos(α - β) + cos(α + β)) |
||||
11. | a. | sin2x • cos3x
= 0 sin2x = 0 cos3x = 0 2x = 0 + k2π ∨ 2x = π + k2π ∨ 3x = 1/2π + k2π ∨ 3x = 11/2π + k2π x = 0 + kπ ∨ x = 1/2π + kπ ∨ x = 1/6π + k• 2/3π ∨ x = 1/2π + k • 2/3π In [0, 2π] geeft dat de oplossingen: {0, 1/6π, 1/2π, 5/6π, p, 7/6π, 11/2π, 11/6π, 2π} |
|||
b. | Als hij symmetrisch
is in (π, 0) dan moet gelden f(π
- a) + f(π + a) = 0 f(π - a) + f(π + a) = sin2(π - a)cos3(π - a) + sin2(π + a)cos3(π + a) = sin(2π - 2a)cos(3π - 3a) + sin(2π + 2a)cos(3π + 3a) = (sin2πcos2a - cos2πsin2a) • (cos3πcos3a + sin3πsin3a) + (sin2πcos2a + cos2πsin2a) • (cos3πcos3a - sin3πsin3a) = -sin2a • -cos3a + sin2a • -cos3a = 0 |
||||
c. | sin2x • cos3x
= 1/2(sin5x
+ sin(-x)) = 1/2(sin5x
- sinx) Een primitieve is daarom 1/2(-1/5cos5x + cosx) omdat de grafiek tussen x = 1/6π en x = 1/2π onder de x-as ligt moet er een minteken voor de integraal: |
||||
= -1/2{(-1/5cos21/2π
+ cos1/2π)
- (-1/5cos5/6π
+ cos1/6π)} = -1/2{(0 + 0) - (1/10√3 + 1/2√3)} = -1/2 • (- 3/5√3) = 3/10√3 |
|||||
12. | a. | 2sin(x
-
1/3π)
= sinx - 1 2(sinxcos1/3π - cosxsin1/3π) = sinx - 1 sinx - √3cosx = sinx - 1 √3cosx = 1 cosx = 1/√3 x = cos-1(1/√3) = 0,96 ∨ x = 2π - 0,86 = 5,33 |
|||
b. | f ' = g2'
2cos(x - 1/3π) = 2cosx cos(x - 1/3π) = cosx x - 1/3π = x + k2π ∨ x - 1/3π = 2π - x + k2π De tweede mogelijkheid geeft 2x = 21/3π ⇒ x = 11/6π + kπ Dat geeft de oplossingen {1/6π, 11/6π} Voor raken moet bovendien gelden f = g2 Het raakpunt is het punt (1/6π, -1) |
||||
© h.hofstede (h.hofstede@hogeland.nl) |