|
|||||
1. | a. | cosx + cos(x
- 1/3π)
= 1/2√3 2cos 1/2(x + x - 1/3π) cos 1/2(x - x + 1/3π) = 1/2√3 2cos(x - 1/6π) cos 1/6π = 1/2√3 cos(x - 1/6π) √3 = 1/2√3 cos(x - 1/6π) = 1/2 x - 1/6π = 1/3π + k2π ∨ x - 1/6π = 2π - 1/3π + k2π x = 1/2π + k2π ∨ x = 15/6π + k2π In interval [0, 2π] geeft dat de oplossingen {1/2π, 15/6π} |
|||
b. | sin(x +
4/5π)
- sin(x - 1/5π)
= √2 2sin1/2(x + 4/5π - x + 1/5π) cos1/2(x + 4/5π + x - 1/5π) = √2 2sin1/2π cos1/2(2x + 3/5π) = √2 2 cos(x + 3/10π) = √2 cos(x + 3/10π) = 1/2√2 x + 3/10π = 1/4π + k2π ∨ x + 3/10π = 2π - 1/4π + k2π x = -1/20π + k2π ∨ x = 19/20π + k2π In interval [0, 2π] geeft dat de oplossingen {19/20π, 119/20π} |
||||
2. | a. | sinx + sin2x
= sin11/2x 2sin1/2(x + 2x) cos1/2(x - 2x) = sin(11/2x) 2sin(11/2x) cos(-1/2x) = sin(11/2x) 2sin(11/2x) cos(-1/2x) - sin(11/2x) = 0 sin(11/2x) (2cos(-1/2x) - 1) = 0 sin(11/2x) = 0 ∨ 2cos(-1/2x) - 1 = 0 sin(11/2x) = 0 ∨ cos(-1/2x) = 1/2 11/2x = 0 + k2π ∨ 11/2x = π + k2π ∨ -1/2x = 1/3π + k2π ∨ -1/2x = 2π - 1/3π + k2π x = 0 + k2/3π ∨ x = 2/3π + k2/3π ∨ x = -2/3π + k4π ∨ x = 21/6π + k4π In interval [0, 2π] geeft dat de oplossingen {0, 2/3π, 11/3π, 2π} |
|||
b. | cos3x - cosx
= sinx -2sin1/2(3x + x) sin1/2(3x - x) = sinx -2sin(2x) sinx = sinx 0 = sinx + 2sin(2x) sinx 0 = sinx (1 + 2sin(2x)) sinx = 0 ∨ 1 + 2sin(2x) = 0 sinx = 0 ∨ sin(2x) = -1/2 x = 0 + k2π ∨ x = π + k2π ∨ 2x = 11/6π + k2π ∨ 2x = π - 11/6π + k2π x = 0 + k2π ∨ x = π + k2π ∨ x = 7/12π + kπ ∨ x = -1/12π + kπ In interval [0, 2π] geeft dat de oplossingen {0, 7/12π, 11/12π, π , 17/12π, 111/12π, 2π} |
||||
3. | a. | sinα +
sinβ = 2sin1/2(α
+
β) cos1/2(α
-
β) sinα + sin(1/2π - α) = 2sin1/2(α + 1/2π - α) cos1/2(α - 1/2π + α) sinα + cosα = 2sin1/4π cos1/2(2α - 1/2π) sinα + cosα = 2 1/2√2 cos(α - 1/4π) sinα + cosα = √2 cos(α - 1/4π) |
|||
b. | sinx + cosx = 1/2
√2 cos(x - 1/4π) = 1/2 (met het resultaat van vraag a) cos(x - 1/4π) = 1/4√2 x - 1/4π = cos-1(1/4√2) = 1,21 ∨ x - 1/4π = 2π - 1,21 = 5,07 x = 1,99 ∨ x = 5,86 |
||||
4. | a. | cosα
+ cosβ = 2cos1/2(α
+
β) sin1/2(α
-
β) cos(x + y) + cos(x - y) = 2cos1/2(x + y + x - y) sin1/2(x + y - x + y) cos(x + y) + cos(x - y) = 2cosx siny 1/2 {cos(x + y) + cos(x - y)} = cosx siny |
|||
b. | cosx =
0,154736 ⇒ x =
1,415436 cosy = 0,573247 ⇒ y = 0.960333 x + y = 2,375769 en x - y = 0,455103 cos(x + y) = -0,7208117 en cos(x - y) = 0,898216 1/2 ( -0,7208117 + 0,898216) = 0,088702 0,154736 0,573247 = 0,088702 154736 573247 = 0,088702 1000000 1000000 = 8,8702 1010 |
||||
c. | 23667 8534212 deel de eerste door 100000 en de tweede door 10000000 0,23667 0,8534212 cosx = 0,23667 ⇒ x = 1,3318593 cosy = 0,8534212 ⇒ y = 0,548282077 x + y = 1,8801414 en x - y = 0,783577223 cos(x + y) = -0,3044349 en cos(x - y) = 0,7083932 1/2 (-0,3044349 + 0,7083932) = 0,20198 23667 8534212 = 0,20198 100000 10000000 = 2,0198 1011 |
||||
5. | a. | xP
= xQ ⇒ 11/10t = t + 2/3π ∨ 11/10t = 2π - t - 2/3π ⇒ t = 20/3π ∨ t = 40/63π yP = yQ ⇒ 11/10t = t + 2/3π ∨ 11/10t = π - t - 2/3π ⇒ t = 20/3π ∨ t = 10/63π De eerste t die gelijk is,
is t = 20/3π
≈ 21 sec. |
|||
b. | De omtrek van de
cirkel is 2π
5 = 10π
cm 10π cm komt overeen met 360Ί, dan komt 20 cm overeen met (20 360)/(2π) ≈ 229Ί |
||||
c. | xM =
1/2
( 5cos 11/10t +
5cos(t + 2/3π)) = 2,5 (cos 11/10t + cos(t + 2/3π)) = 2,5 2cos1/2(11/10t + t + 2/3π) cos1/2(11/10t - t - 2/3π) = 5 cos(21/20t + 1/3π) cos(1/20t - 1/3π) Op dezelfde manier: yM = 5 sin(21/20t + 1/3π) cos(1/20t - 1/3π) Kennelijk moet gelden φ = 5cos(1/20t - 1/3π) |
||||
6. | a. | ||||
dus x(t) = 2cos(8,5t)cos(6,5t)
en y(t) = 2sin(8,5t)cos(6,5t) Neem r(t) = 2cos(6,5t) dan staat er x(t) = r(t)cos(8,5t) en y(t) = r(t)sin(8,5t) |
|||||
b. | In
de oorsprong is x(t) = 0 en y(t) = 0 Dat kan alleen als r(t) = 0, want cos(8,5t) en sin(8,5t) kunnen nooit tegelijk nul zijn cos(6,5t) = 0 geeft 6,5t = 0,5π + kπ dat geeft t = (1/13)π + k (2/13)π tussen 0 en 2π geeft dat de oplossingen (1/13)π, (3/13)π, (5/13)π, ... , (25/13)π, en dat zijn er 13. |
||||
7. | Gebruik de formule sina + sinb = 2sin1/2(a
+ b) cos1/2(a
- b) sinx + sin(x + 1/3π) = 2sin1/2(x + x + 1/3π) cos1/2(x - x - 1/3π) = 2sin(x + 1/6π) cos(-1/6π) = 2 1/2√3 sin(x + 1/6π) = √3 sin(x + 1/6π) dus 1/2(f + g) = 1/2√3 sin(x + 1/6π) Dus a = 1/2√3 en b = 1/6π |
||||
© h.hofstede (h.hofstede@hogeland.nl) |