|
|||||
1. | a. | lny = 4ln(x
+ 1) + 1/2lnx
- ln(x - 2) 1/ydy = 4/(x + 1)dx + 1/(2x)dx - 1/(x - 2)dx dy/dx = y • (4/(x + 1) + 1/(2x) - 1/(x - 2)) |
|||
b. | lny =
2/3lnx
+ 1/2ln(1
- x) - 6ln(2x - 1) 1/ydy = 2/(3x)dx - 1/(2(1 - x))dx - 12/(2x - 1)dx dy/dx = y • (2/(3x) - 1/(2(1 - x)) - 12/(2x - 1) ) |
||||
c. | lny =
1/3lnx
+ 8ln(x - 1) + 1/2ln(2
+ 2x) 1/ydy = 1/(3x)dx + 8/(x - 1)dx + 1/(2 + 2x)dx dy/dx = y • (1/(3x) + 8/(x - 1) + 1/(2 + 2x)) |
||||
d. | lny = -1/2ln(4
- x) - 6ln(2x + 3) 1/ydy = 1/(2(4 - x))dx - 12/(2x + 3)dx dy/dx = y • (1/(2(4 - x))dx - 12/(2x + 3)dx ) |
||||
2. | y = xn
lny = n • lnx 1/y • dy = n • 1/x • dx dy/dx = y • n • 1/x y ' = xn • n • x-1 = nxn - 1 |
||||
© h.hofstede (h.hofstede@hogeland.nl) |