|
|||||
1. | a. |
cosx • dy/dx
= cos2x - sinx • y
dy/dx = cosx - sinx/cosx • y dy/dx + sinx/cosx • y = cosx f = sinx/cosx = tanx dus ∫ f = -ln(cosx) h = e ∫ f = e-ln(cosx) = (cosx)-1 hg = (cosx)-1 • cosx = 1 dus ∫ hg = x y = (c + x)/(cosx)-1 = c • cosx + xcosx |
|||
b. |
xy' = 2y + 3x4
+ 2 y ' = 2y/x + 3x3 + 2/x y' - y • 2/x = 3x3 + 2/x f = -2/x dus ∫ f = -2lnx h = e ∫ f = e-2lnx = x-2 hg = x-2 • (3x3 + 2/x) = 3x + 2x-3 dus ∫ hg = 11/2x2 - x-2 y = (c + 1,5x2 - x-2)/x-2 = cx2 + 11/2x4 - 1 |
||||
c. | dy/dx
+ 2xy = 2x f = 2x dus ∫ f = x2 h = e∫ f = ex² hg = 2xex² dus ∫ hg = ex² y = (c + ex²) / ex² = ce-x² + 1 |
||||
d. | 2x• dy/dx
+ y = 2x√x
dy/dx + 1/2x • y = √x f = 1/2x = 1/2 • 1/x dus ∫ f = 1/2lnx h = e∫ f = e0,5lnx = √x hg = √x • √x = x dus ∫ hg = 1/2x2 y = (c + 0,5x²)/√x = c/√x + 1/2x√x |
||||
e. | y' - 2y = e3x
f = -2 dus ∫ f = -2x h = e∫ f = e-2x hg = e-2x • e3x = ex dus ∫ hg = ex y = (c + ex) / e-2x = c • e2x + e3x |
||||
f. | x2 y' + xy
= x2 + 1 y ' + y/x = 1 + 1/x² f = 1/x dus ∫ f = lnx h = e∫ f = elnx = x hg = x + 1/x dus ∫ hg = 1/2x2 + lnx y = (c + 0,5x2 + lnx)/ x = c/x + 1/2x + lnx/x |
||||
g. | y' + y/(x - 1)
= 1/(x - 1)(x + 3) f = 1/(x- 1) dus ∫ f = ln(x - 1) h = e∫ f = eln(x - 1) = x - 1 hg = 1/(x + 3) dus ∫ hg = ln(x + 3) y = (c + ln(x + 3))/(x - 1) |
||||
h. | (1 + x2) • y' + 2xy
= 1 + x2 y' + 2x/(1 + x²) • y = 1 f = 2x/(1 + x²) dus ∫ f = ln(1 + x2) h = e∫ f = eln(1 + x²) = 1 + x2 hg = 1 + x2 dus ∫ hg = x + 1/3x3 y = (c + x + 1/3x3 )/(1 + x2) |
||||
i. | y' x - 3y = 7x y ' - 3/x • y = 7 f = -3/x dus ∫ f = -3lnx h = e∫ f = e-3lnx = x-3 hg = x-3 • 7 dus ∫ hg = -7/2x -2 y = (c - 7/2x-2) / x-3 = cx3 - 7/2x |
||||
j. | y' + 3y = e-3x
f = 3 dus ∫ f = 3x h = e∫ f = e3x hg = e3x • e-3x = 1 dus ∫ hg = x y = (c + x)/e3x = (c + x) • e-3x |
||||
k. | xy' + 2y = 8x2
y ' + 2/x • y = 8x f = 2/x dus ∫ f = 2lnx h = e∫ f = e2lnx = x2 hg = x2 • 8x = 8x3 dus ∫ hg = 2x4 y = (c + 2x4) / x2 = cx -2 + 2x2 |
||||
l. | xy' - 4y = x6ex
y ' - 4/x • y = x5ex f = -4/x dus ∫ f = -4lnx h = e∫ f = e-4lnx = x-4 hg = x-4 • x5ex = xex dus ∫ hg = xex - ex y = (c + xex - ex) / x-4 = cx4 + x5ex - x4ex |
||||
m. | cosx • y'
+ ysinx = 2cos3xsinx - 1 dy/dx + y sinx/cosx = 2cos2xsinx - 1/cosx f = sinx/cosx = tanx dus ∫ f = -ln(cosx) h = e∫f = e-ln(cosx) = (cosx)-1 hg = 2cosxsinx - 1/cos²x = sin2x - 1/cos²x ∫ hg = -1/2cos2x - tanx y = (c - 1/2cos2x - tanx) • cosx y = c • cosx - 1/2cos2xcosx - tanxcosx |
||||
© h.hofstede (h.hofstede@hogeland.nl) |