|
|||||
1. | a. | v = e∫1/xdx
= elnx = x u'x = x2 geeft u' = x dus u = 1/2x2 + c Dan is y = x • (1/2x2 + c) = 1/2x3 + cx y(1) = 4 geeft c = 31/2 Dus de oplossing is y = 1/2x3 + 31/2x |
|||
b. | y' - y/√x
= e2√x v = e∫1/√xdx = e2√x u' • e2√x = e2√x u' = 1 dus u = x + c Dan is y = (x + c) • e2√x y(0) = 2 dus c = 2 dus de oplossing is y = (x + 2) • e2√x |
||||
c. | v = e-∫2xdx
= e-x² u' • e-x² = 4x u' = 4xex² dus u = 2ex² + c y = e-x² • (2ex² + c) y = 2 + ce-x² |
||||
d. | xy' = y
+ x3 + 3x2 - 2x y' - 1/x • y = x2 + 3x - 2 v = e-∫-1/x dx = elnx = x u' • x = x2 + 3x - 2 dus u' = x + 3 - 2/x Dan is u = 1/2x2 + 3x - 2lnx + c y = x • (1/2x2 + 3x - 2lnx + c) y = 1/2x3 + 3x2 - 2xlnx + cx |
||||
e. | (x - 2)y'
= y + 2(x - 2)3 y' - 1/(x -2) • y = 2(x - 2)3 v = e-∫(-1/(x - 2)dx = eln(x - 2) = x - 2 u' • (x - 2) = 2(x - 2)3 dus u' = 2(x - 2) Dan is u = (x - 2)2 + c y = (x - 2)3 + c(x - 2) |
||||
f. | y' +
1/tanx • y = 5ecosx
v = e-∫1/tanx = e-ln(sinx) = 1/sinx u' • 1/sinx = 5ecosx dus u' = 5sinx • ecosx u = -5ecosx + c y = 1/sinx • (-5ecosx + c) mooier: ysinx = -5ecosx + c |
||||
g. | x3y'
+ (2 - 3x2)y = x3 y' + (2 - 3x²)/x³ • y = 1 ∫((2 - 3x²)/x³)dx = -1/x² - ln(x3) dus v = e^(1/x² + ln(x3)) = e1/x² • x3 u' • e1/x² • x3 = 1 dus u ' = x-3 • e-1/x² dan is u = 1/2 • e-1/x² + c y = (1/2 • e-1/x² + c) • e1/x² • x3 = 1/2x3 + ce1/x² • x3 |
||||
2. | a. | Dit is er eentje uit
de "snuggere opmerking" onderaan de les: ylnydx + (x - lny)dy = 0 ylny dx/dy + x - lny = 0 x' • ylny + x = lny x' + 1/ylny • x = 1/y x = u • v v = e-∫1/ylny = e-ln(lny) = (lny)-1 = 1/lny u' • 1/lny = 1/y dus u' = lny • 1/y en u = 1/2ln2y + c x = ( 1/2ln2y + c) • 1/lny = 1/2lny + c/lny mooier: 2xlny = ln2y + c |
|||
b. | Nóg zo eentje: ydx + (xy + x - 3y)dy = 0 y + (xy + x - 3y) • y' = 0 x' • y + (xy + x - 3y) = 0 x' + (x + x/y - 3) = 0 x' + x(1 + 1/y) = 3 en nou is 'ie lineair. x = u • v v = e-∫(1 + 1/y) = e-y - lny = 1/y • e-y u' • 1/y • e-y = 3 dus u' = 3yey en dan is u = 3yey - 3ey + c (partieel) x = (1/y • e-y ) • (3yey - 3ey + c) = 3 - 3/y + c/y • e-y of mooier: xy = 3y - 3 + ce-y |
||||
© h.hofstede (h.hofstede@hogeland.nl) |