|
|
OPGAVEN |
|
|
1. |
Los algebraïsch op: 2log (x
+ 4) = 5 + 1/2log x |
|
|
2. |
Benader 5log 7 in drie decimalen. |
|
|
3. |
Benader het snijpunt van de grafieken van y
= 4log(x + 4) en y = 3log
x in drie decimalen. |
|
|
 |
|
|
OPLOSSING |
|
|
1. |
2log (x
+ 4) = 5 + 1/2log x
Þ 2log(x + 4) = 2log32
+ 2logx/2log0,5
Þ 2log(x + 4)
= 2log32 + 2logx/-1
Þ 2log(x + 4)
= 2log32 - 2logx
Þ 2log(x
+ 4) = 2log32/x
Þ x + 4 = 32/x
Þ x2 + 4x
- 32 = 0
Þ (x - 4)(x + 8) = 0
Þ x =
4 V x = 8 |
|
|
2. |
5log 7 = log7
/ log5 » 1,209 |
|
|
3. |
Y1 = log(x
+ 4)/log(4) en Y2 = log(x)/log(3)
Calc - intersect geeft X »
6,394 en Y » 1,689 |
|
|
 |