|
|
OPGAVEN |
|
|
1. |
Los algebraïsch op: 5 • 2x +
1 - 15 = 0 |
|
|
2. |
Los algebraïsch op: 4 • 3log x
- 8 = 0 |
|
|
3. |
Los algebraïsch op: 2 • 3log x
= 3log (x - 2) + 2 |
|
|
4. |
Gegeven is, dat p = 6 • 2q
. Daaruit volgt dat q = a + 2 log p
. Bereken algebraïsch a. |
|
|
|
|
OPLOSSING |
|
|
1. |
5 • 2x +
1 - 15 = 0 Þ 2x
+ 1 = 3 Þ x +
1 = 2log 3 Þ
x = 2 log 3 - 1
(» 1,58) |
|
|
2. |
4 • 3log x
- 8 = 0 Þ 3 log x = 2
Þ x = 32 = 9 |
|
|
3. |
2 • 3log x
= 3log (x - 2) + 2
Þ 3log x2
= 3log(x - 2) + 3log 9
Þ 3log x2
= 3log((x - 2)•9)
Þ x2 = 9(x -
2) = 9x- 18
Þ x2 - 9x +
18 = 0
Þ (x - 6)(x- 3) = 0
Þ x =
6 V x = 3 |
|
|
4. |
p = 6 • 2q
Þ 1/6p = 2q
Þ q = 2 log(1/6p)
= 2 log p + 2 log1/6
dus a = 2 log(1/6)
= log(1/6)/log(2) »
-2,58 |
|
|
|