Wat de schildpad zei tegen Achilles
- vrij naar Lewis Carroll -
Achilles had de schildpad ingehaald
en was comfortabel op diens rug gaan zitten. "Dus je
bent toch aan het eind van onze race gekomen?" zei de
schildpad. "Zelfs al bestaat hij uit een oneindige serie
afstanden? Ik dacht dat één of andere wijsneus had bewezen dat
dat onmogelijk zou zijn?"
"Het is wél mogelijk," zei Achilles. "Het is zelfs
gebeurd! Solvitur ambulando. Zie je, de afstanden werden
continu kleiner, en daarom..."
"Maar als ze nou continu gróter waren geworden?"
onderbrak de schildpad hem. "Wat dan?" |
"Dan zou ik nu hier niet zijn," antwoordde Achilles
bescheiden, "En jij zou intussen al een paar keer rond de wereld zijn
gegaan!"
"De aarde is toch plat?," zei schildpad; "...En ik trouwens
ook binnenkort'" pufte hij er achteraan, "Ik snap nu wat ze
bedoelen als ze je een zwaargewicht noemen! Kom, zal ik je eens vertellen
over een race waarvan de meeste mensen denken dat ze aan het eind kunnen
komen in twee of drie stappen, maar die in werkelijkheid bestaat uit een
oneindig aantal stappen, elk langer dan de vorige."
"Nou, heel graag," zei de Griekse krijger, terwijl hij uit zijn
helm (maar weinig Griekse krijgers hadden broekzakken) een kladblok en een
potlood haalde. "Ga vooral door! Maar spreek langzaam graag! Steno is
nog niet uitgevonden!"
"Ah, die prachtige eerste stelling van Euclides," mompelde de
schildpad dromerig, "Bewonder jij Euclides ook zo?"
"Uit de grond van mijn hart! Tenminste voor zover je een werk kunt
bewonderen dat pas over een paar eeuwen zal worden gepubliceerd"
"Laten we eens een klein stukje van de redenering uit die prachtige
eerste stelling bekijken, slechts twee stappen plus de conclusie van die
twee stappen. Schrijf ze maar in je kladblok. Laten we ze, om het er een
beetje handig over te kunnen hebben, A,B en Z noemen:
(A) |
Dingen die gelijk zijn aan hetzelfde
zijn gelijk aan elkaar |
(B) |
De twee zijden van deze driehoek zijn
dingen die gelijk zijn aan hetzelfde |
(Z) |
De twee zijden van deze driehoek zijn
gelijk aan elkaar |
"Aanhangers van Euclides zullen het met me eens zijn, neem ik
aan, dat Z logisch volgt uit A en B, dus dat iedereen die A en B als waar
accepteert ook Z als waar moet accepteren?"
"Zeker. Het kleinste kind van de basisschool -zodra basisscholen zijn
uitgevonden, wat trouwens pas over een paar duizend jaar zal zijn-
zal het daar mee eens zijn."
"En zelfs als iemand het niet met A of B eens zou zijn, dan nog zou
hij de gevolgtrekking als waar kunnen accepteren, neem ik aan?"
"Ongetwijfeld zou dat kunnen. Iemand zou kunnen zeggen: 'Ik accepteer
de stelling: ALS A en B waar zouden zijn, DAN zou Z
ook waar zijn, maar ik ben het niet eens met het feit dat A
en B waar zijn". Maar ja, zo'n lezer zou misschien beter Euclides met
rust kunnen laten en zich gaan richten op voetbal of zo."
"En zou er ook iemand kunnen zijn die zou zeggen: "Ik
accepteer A en B als waar, maar ik accepteer de gevolgtrekking niet?"
"Tuurlijk zou dat kunnen. Maar ook hij zou zich beter met voetbal
kunnen gaan bezighouden."
"En geen van beide mensen," vervolgde de schildpad, "Hoeft
op dit moment Z als waar te accepteren?"
"Klopt helemaal," zei Achilles.
"Nou, dan wil ik graag dat je mij als iemand van de tweede soort
ziet, en je moet mij dwingen om logisch gezien Z als waar aan te
nemen"
"Ha, een schildpad die voetbal speelt dat zou..." begon Achilles
"... belachelijk zijn natuurlijk," onderbrak de schildpad hem
haastig. "Maar laten we niet afdwalen. Laten we het eerst over Z
hebben, en later over voetbal."
"Dus ik moet jou dwingen Z als waar te accepteren?" zei Achilles
peinzend. "En jouw huidige stelling is dat je A en B wél accepteert,
maar dat je de stelling ..."
"Laten we de stelling C noemen," zei de schildpad.
"... dus dat je het volgende niet accepteert:
(C) |
ALS A en B waar zijn, DAN is Z waar |
"Precies, dat is mijn huidige standpunt," ze de schildpad.
"Dan moet ik je toch vragen ook C te accepteren"
"Dat wil ik wel doen," zei de schildpad "Zodra je C op je
kladblok hebt geschreven. Wat staat er nog meer op trouwens?"
"Alleen een paar herinneringen," zei Achilles, zenuwachtig
bladerend met de pagina's. "Een paar herinneringen aan... aan de
veldslagen waarbij ik me heb onderscheiden.
"Nog genoeg lege pagina's, zie ik!" merkte de schildpad
vrolijk op. "We zullen ze allemaal nodig hebben!" (Achilles
huiverde) "Nou, schrijf op wat ik je dicteer:...
(A) |
Dingen die gelijk zijn aan hetzelfde
zijn gelijk aan elkaar |
(B) |
De twee zijden van deze driehoek zijn
dingen die gelijk zijn aan hetzelfde |
(C) |
Als A en B waar zijn, dan is Z ook waar |
(Z) |
De twee zijden van deze driehoek zijn
gelijk aan elkaar |
"Je moet de laatste D noemen, niet Z," zei Achilles,
"Hij komt direct na de andere drie. Als je A en B en C accepteert dan
MOET je wel ook Z accepteren."
"Waarom dan?"
"Omdat het logisch eruit volgt. Als A en B en C allemaal waar zijn,
dan MOET Z wel waar zijn. Daar kun je het niet mee oneens zijn, dat kan ik
me niet voorstellen."
"Hmm,... Als A en B en C waar zijn, dan moet Z waar zijn,"
herhaalde de schildpad bedachtzaam, "Dat is weer een nieuwe stelling,
nietwaar? En, als ik het daar niet mee eens zou zijn, dan zou ik heel goed
A en B en C wel kunnen accepteren, maar Z nog steeds niet. Ja toch?"
"Dat zou kunnen," gaf Achilles toe, "Maar dat zou wel van
een enorme eigenwijsheid getuigen. Maar goed, het zou mogelijk zijn.
Daarom vraag ik je om nog één stelling te accepteren".
"Nou vooruit, Ik wil er best nog eentje accepteren hoor, zodra je hem
in je kladblok hebt opgeschreven. We zullen het noemen:
(D) |
Als A en B en C waar zijn, dan is Z
waar |
"Heb je hem al opgeschreven?"
"Jazeker!" juichte Achilles terwijl hij zijn potlood
triomfantelijk terugstopte. "En daarmee zijn we dan eindelijk aan het
eind van deze gedachten-race gekomen. Nu dat je eenmaal A en B en C en D
accepteert, MOET je wel Z ook accepteren."
"Oh ja," zei de schildpad onschuldig. "Laten we de dingen
even duidelijk stellen. Ik accepteer A en B en C en D. Maar als ik nou nog
steeds Z weiger te accepteren?"
"Dan zou de logica jou bij je keel pakken en je dwingen Z te
accepteren," antwoordde Achilles triomfantelijk. De logica schrijft
het voor, je kunt er zelf niets aan doen: Wie A en B
en C en D accepteert, moet ook Z accepteren" Je hebt dus geen
keus!"
"Wat de logica ons vertelt is zeker de moeite waard om op te
schrijven," zei de schildpad. "Dus pak je kladblok maar weer en
schrijf deze nieuwe stelling op, we noemen hem:
(E) |
Als A en B en C en D waar
zijn, dan is Z waar. |
Voordat ik deze stelling als waar accepteer, kan ik Z nog niet
aannemen, dus het is een noodzakelijke stap, snap je?"
"Ik snap het," zei Achilles met een droevige ondertoon in zijn
stem......
Op dit punt moest de verteller, omdat hij dringende zaken bij de
bank moest regelen, het gelukkige paar achterlaten. Pas een paar maand
later kwam hij weer langs deze plek. Achilles zat nog steeds op de rug van
de schildpad, en was druk aan 't schrijven in zijn kladblok, dat bijna vol
bleek te zijn. De schildpad zei net "Heb je de laatste stap
opgeschreven? Als ik goed geteld heb zijn dat er nu 1001. En nog vele
miljoenen te gaan!"...
|