© h.hofstede (h.hofstede@hogeland.nl)

   
1.
  Toon aan dat de grafiek van f symmetrisch is ten opzichte van de lijn x = π.
       
2.
  Toon aan dat de grafiek van f symmetrisch is ten opzichte van het punt waar  x = π.
       
3. examenvraagstuk VWO, 1984
       
  Met domein [0, 2π] is voor elke p ∈ R gegeven de functie:  fp(x) = sin2x cosx - pcosx
Bewijs dat voor elke p ∈ R  de grafiek van  fp  een symmetrie-as heeft.
       
4. Examenvraagstuk VWO Wiskunde B, 2014.

Voor elke waarde van a met a ≠ 0 is de functie fa gegeven door fa(x) = 2sin(ax) + sin(2ax) .
Het punt (π/a , 0) is een gemeenschappelijk punt van de grafiek van fa en de x-as.
       
  a. Bewijs dat voor elke waarde van a (met a ≠ 0 ) de grafiek van fa de x-as in (π/a , 0) raakt.
       
  b. Bewijs dat de grafiek van f2 puntsymmetrisch is in het punt (1/2π, 0).
     

© h.hofstede (h.hofstede@hogeland.nl)